Aritmetika dimulai dari perhitungan bilangan asli yang masih sederhana. Kemudian berkembang dengan menggunakan bilangan cacah dan bilangan bulat. Pada saat pengerjaan hitung menggunakan bilangan bulat, ada saatnya kita berhadapan dengan suatu bentuk yang tidak dapat dipahami dengan mudah. Misalnya bentuk pembagian 1/0. Apakah ini suatu bilangan (tertentu) ataukah bukan bilangan. Dapat ditunjukkan bahwa bentuk pembagian dengan nol di atas merupakan bentuk yang tidak terdefinisi (undefined).
Andaikan ada bilangan k sedemikian hingga 1/0 = k maka berdasarkan definisi pembagian sebagai invers dari perkalian, bentuk tersebut ekuivalen dengan 1 = 0.k . Tetapi segera kita dapatkan bahwa ekspresi matematika yang terakhir tidaklah benar karena setiap bilangan jika dikali nol maka hasilnya nol. Jadi, tidak mungkin ada bilangan k tersebut. Dengan demikian kita tidak mungkin mendefinisikan suatu bilangan yang ekuivalen dengan bentuk 1/0.
Di samping bentuk yang tak terdefinisi di atas, di dalam aritmetika kita menjumpai bentuk-bentuk yang juga tidak ekuivalen dengan bilangan (tertentu), tetapi bukan karena tidak ada hasilnya namun terlalu banyak hasilnya. Oleh karena yang namanya bilangan itu harus tunggal atau harus jelas titiknya pada garis bilangan, maka bentuk yang demikian bukan bilangan. Bentuk tersebut dikenal dengan nama bentuk tak-tentu (indeterminate form).
Sumber:http://p4tkmatematika.org/2013/12/perilaku-nol-dan-tak-hingga-serta-bentuk-tak-tentu/
Posting Komentar